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Wave fronts may move upstream in semiconductor superlattices
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In weakly coupled, current biased, doped semiconductor superlattices, domain walls may move upstream
against the flow of electrons. For appropriate doping values, a domain wall separating two electric-field
domains moves downstream below a first critical current, it remains stationary between this value and a second
critical current, and then moves upstream above. These conclusions are reached by using a comparison prin-
ciple to analyze a discrete drift-diffusion model, and validated by numerical simulations. Possible experimental
realizations are suggested.

PACS number~s!: 05.45.2a, 72.20.Ht, 73.61.2r
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I. INTRODUCTION

Current instabilities in doped semiconductor superlatti
~SL’s! have been an active subject of research during
decade. For strongly coupled SL’s, Bloch oscillations@1–3#
and Wannier-Stark hopping@4# produce negative differentia
conductivity at high electric fields. This may result in se
sustained oscillations of the current due to recycling
charge dipole domains as in the Gunn effect of bulkn-type
GaAs@5,2#. For weakly coupled SL’s, sequential tunneling
the main mechanism of vertical transport. Under dc volta
bias conditions, stationary electric field domains may form
doping is large enough@6,7#. Below a critical doping value
the existing charge inside the SL may not be able to
domain walls, and current self-oscillations appear@8,9#.
These oscillations may be due to recycling of charge mo
poles~domain walls! or dipoles depending on the bounda
condition at the injecting contact region~in a typical
n1-n-n1 configuration with the SL imbedded betwee
highly doped regions, the doping at the emitter region
crucial! @10#. Driven chaotic oscillations have also been p
dicted @11# and observed in experiments@12#. Finally, there
are ways to tune the charge inside the SL~and therefore
obtain stationary domains or self-oscillations! without re-
placing it by a different one, for example, by applying
transverse magnetic field@13# or by photoexciting the SL
@14#.

Transport in weakly coupled SL’s can be described
simple rate equation models for electron densities and a
age fields in the wells,@15–18#. Many of the effects related
above have been explained by means of a simple disc
drift model @16,17,19,20#. In this model, the tunneling cur
rent between two adjacent wells,Ji→ i 11, equals the two-
dimensional~2D! electron charge density at welli times a
drift velocity, which depends on the electric field at the sa
well. By starting from a microscopic sequential tunneli
model, it has been shown that the discrete drift model i
good approximation at low temperatures and for fields ab
PRE 611063-651X/2000/61~5!/4866~11!/$15.00
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the first plateau of the SL current-voltage characteris
@18,21#. For low dc voltages on the first plateau, a discre
diffusion ~which is a nonlinear function of the field! should
be added. This term contains the contribution toJi→ i 11 of
the tunneling from welli 11 back to welli ~which vanishes
for large enough electric fields! @18,21#. In this paper we
report an interesting consequence of electron diffusivity
low fields: if the current is sufficiently high, and so is th
doping, a domain wall~monopole wave! which connects two
domains may travel in a direction opposite to the flow dire
tion for electrons~i.e., upstream, in the positive current di-
rection!. This striking phenomenon is contrary to the usu
situation: a monopole either moves downstream~in the di-
rection of the flow of electrons!, or it remains stationary
@19#. We substantiate our claim both by numerical simu
tions of the discrete drift-diffusion model and by rigorou
mathematical analysis based upon a comparison princ
@22#. Mathematical analysis yields useful bounds for critic
values of current and well doping, and for monopole velo
ity.

There are related fields for which differential-differen
equations~similar to discrete drift-diffusion models! model
the systems of interest. These include propagation of ne
impulses along myelinated fibers, modeled by discr
FitzHugh-Nagumo equations@23,24#; motion of dislocations
@25,26# and sliding charge density waves@27#, modeled by
variants of the Frenkel-Kontorova model@28#; etc. The
theory of wave front propagation was developed for some
these models, which are simpler than ours: convection
typically absent from them and diffusion is purely line
@24#.

The rest of the paper is as follows. We write the dri
diffusion model with appropriate boundary conditions
Sec. II. There we render these equations dimensionless,
explain the results of numerical simulations on a current
ased infinitely long SL’s. Furthermore, we find by numeric
simulations that our results for infinite SL’s may be realiz
in finite SL’s with appropriate boundary conditions und
4866 ©2000 The American Physical Society
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FIG. 1. ~a! Drift velocity and ~b! diffusion coefficient for a 9-nm GaAs/4-nm AlAs SL. Doping at the wells isND
w51.531011 cm22,

whereas at the contact regions,ND5231018 cm23. ~c! Dimensionless drift velocityv(E), diffusion ~equivalent to backward tunneling
velocity! D(E), and forward tunneling velocityv ( f )(E)5v(E)1D(E). ~d! Extension of the dimensionless diffusivity to negative values
field. We haveD(2E)5v ( f )(E). The same formula yields the extension ofv ( f )(E) to negative fields. Thenv(E) is an odd function ofE.
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constant current bias. A theoretical analysis based on
comparison principle is presented in Sec. III. Section IV co
tains our conclusions. Finally some material of a more te
nical nature is relegated to the Appendixes.

II. DISCRETE DRIFT-DIFFUSION MODEL

A. Equations and boundary conditions

At low enough temperatures~much less than a typica
Fermi energy of a SL well measured from the first subba
say 20 meV or 232 K!, the following discrete drift-diffusion
equations model sequential vertical transport in a wea
doped SL@18,21#:

«

e

dFi

dt
1

niv~Fi !

d1w
2D~Fi !

ni 112ni

~d1w!2
5J~ t ! , ~1!

Fi2Fi 215
e

«
~ni2ND

w!. ~2!

Equation~1! is Ampère’s law establishig that the total cu
rent densityeJ is the sum of displacement and tunnelin
currents. The latter consists of a drift term,eniv(Fi)/(d
he
-
-

,

ly

1w), and a diffusion term,eD(Fi) (ni 112ni)/(d1w)2. We
have adopted the convention~typical in this field! that the
current density has the same direction as the flow of e
trons. Equation~1! holds fori 51, . . . ,N21. Equation~2! is
the Poisson equation, and it holds fori 51, . . . ,N. ni is the
2D electron number density at welli, which is singularly
concentrated on a plane located at the end of the well.Fi is
minusan average electric field on a SL period comprising
i th well and thei th barrier ~well i lies between barriersi
21 andi; barriers 0 andN separate the SL from the emitte
and collector contact regions, respectively!. Parameters«, d,
w, and ND

w are well permittivity, barrier width, well width,
and 2D doping in the wells, respectively.

Drift velocity and diffusion coefficient are depicted i
Fig. 1 for the 9-nmGaAs/4-nmAlAs SL of Ref.@9#. We have
obtained them from microscopic calculations presented
Ref. @18# ~which is appropriate for these sample paramet
@29#! by settingv(F)5J(ND

w ,ND
w ,F)(d1w)/ND

w andD(F)
52@]J(ND

w ,ND
w ,F)/]ni 11#(d1w)2. Heree J(ni ,ni 11 ,Fi)

is the tunneling current between wellsi and i 11,Ji→ i 11.
We assume that the tunneling current is a function of
average field at thei th SL period,Fi5F, and of the 2D
electron densities at wellsi and i 11, ni and ni 11, respec-
tively. Notice that our model for the tunneling current,
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eJ~ni ,ni 11 ,Fi !5
eniv~Fi !

d1w
2eD~Fi !

ni 112ni

~d1w!2

[
eniv

( f )~Fi !2eni 11v (b)~Fi !

d1w
, ~3!

is reasonable for temperatures much lower than a typ
Fermi energy in the wells measured from the first subb
~say 20 meV!, @21#. The tunneling current density shou
change sign if we reverse the electric field and exchange
electron densities at wellsi and i 11: J(ni ,ni 11 ,Fi)
52J(ni 11 ,ni ,2Fi). This inversion symmetry implies

v ( f )~2F !5v (b)~F ! and v~2F !52v~F !,

where v (b)(F)5D(F)/(d1w) and v ( f )(F)5v(F)
1v (b)(F). See Fig. 1~d!.

Equations~1! and~2! should be supplemented with appr
priate bias, initial, and boundary conditions. Among possi
bias conditions, we shall consider the extreme cases of
rent bias@J(t) specified# and voltage bias

~d1w! (
i 51

N

Fi5V , ~4!

with specified V5V(t). Using Eq. ~4! ignores potential
drops at the contact regions and at barrier 0, and it overe
mates the contribution of barrierN by a factor 11w/d @21#.
These contributions are negligible for long SL’s (N540 or
larger!, so that we shall adopt the simpler expression~4!.
Appropriate boundary conditions have been derived un
the same approximations as in Eq.~1! @21#. They are

«

e

dF0

dt
1 j e

( f )~F0!2
n1w(b)~F0!

d1w
5J~ t ! , ~5!

«

e

dFN

dt
1

nNw( f )~FN!

d1w
5J~ t ! , ~6!

where the emitter current densitye je
( f )(F), the emitter back-

ward velocity w(b)(F), and the collector forward velocity
w( f )(F) are functions of the electric field depicted in Fig.
of Ref. @21# for contact regions similar to those used in e
periments@9#.

To analyze the discrete drift-diffusion model, it
convenient to render all equations dimensionless. Letv(F)
reach its first positive maximum at (FM ,vM). We adoptFM ,
ND

w , vM , vM (d1w), eND
wvM /(d1w), and «FM(d1w)/

(eND
wvM) as the units ofFi , ni , v(F), D(F), eJ, and t,

respectively. For the first plateau of the 9/4 SL of Ref.@9#,
we find FM56.92 kV/cm,ND

w51.531011 cm22, vM5156
cm/s,vM (d1w)52.0331024 cm2/s, andeND

wvM /(d1w)
52.88 A/cm2. The units of current and time are 0.326 m
and 2.76 ns, respectively. Then Eqs.~1!–~4! become

dEi

dt
1v~Ei ! ni2D~Ei ! ~ni 112ni !5J, ~7!

Ei2Ei 215n ~ni21!, ~8!
al
d
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e
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1

N (
i 51

N

Ei5f. ~9!

Here we have used the same symbols for dimensional
dimensionless quantities except for the electric field (F di-
mensional, E dimensionless!. The parametersn5eND

w/
(« FM) andf5V/@FMN(d1w)# are the dimensionless dop
ing and average electric field~bias!, respectively. For the 9/4
SL, n'3. We recall thati 51, . . . ,N21 in Eq. ~7! and i
51, . . . ,N in Eq. ~8!. The boundary conditions~5! and ~6!
become

dE0

dt
1Je~E0!2we~E0! n15J, ~10!

dEN

dt
1wc~EN! nN5J, ~11!

where

Je~E0!5
j e
( f )~FM E0! ~d1w!

ND
wvM

,

we~E0!5
w(b)~FM E0!

vM
, ~12!

wc~EN!5
w( f )~FM EN!

vM
.

Figure 2 showsJe , we , andwc as functions of the electric
field. They are dimensionless versions of the curves plo
in Fig. 3 of Ref.@21#.

B. Numerical simulations

Simple solutions of the drift-diffusion equations~7! and
~8! under constant current bias are stationary or mov
monopole wave fronts connecting two electric field domai
Let us consider monopole solutions with profiles$Ei%, which
are increasing functions ofi, for they are compatible with
realistic boundary conditions in which the emitter region
highly doped@9#. We have simulated numerically on a larg
SL,

dEi

dt
2

D~Ei !1v~Ei !

n
~Ei 212Ei !2

D~Ei !

n
~Ei 112Ei !

5J2v~Ei !, ~13!

with fixed J, which is equivalent to Eqs.~7! and ~8!. Let
E(1)(J),E(2)(J),E(3)(J) be the three solutions ofv(E)
5J for vm,J,1, where (Em ,vm) is the minimum ofv(E)
for E.1. For the 9/4 SL of Fig. 1,Em59.8571 andvm
50.02192. We have simulated Eq.~13! for different values
of n.0 and ofJP(vm,1). The initial condition was chose
so thatEi→E(1)(J) as i→2`, andEi→E(3)(J) as i→`.
We observed that, after a short transient, a variety of ini
conditions sharing these features evolved toward either a
tionary or moving monopole. For systematic numerical stu
ies, we therefore adopted an initial steplike profile, withEi
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FIG. 2. Dimensionless functions of the electric field for the contact regions.~a! Current at the emitter,Je(E). ~b! Backward velocity at
the emitter,we(E). ~c! Forward velocity at the collector,wc(E).
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5E(1)(J) for i ,0, Ei5E(3)(J) for i .0 and E05E(2)(J).
The boundary data were taken to beE2N5E(1)(J),EN
5E(3)(J) with N large.

Our results show that the dimensionless dopingn deter-
mines the type of solution of Eq.~13! which is stable. There
are two important values ofn,n1,n2.

~i! For 0,n,n1 and each fixedJP(vm,1), only travel-
ing monopole fronts moving downstream~to the right! were
observed. Forn.n1, stationary monopoles were found. A
cording to the arguments of Wackeret al. @19# for the dis-
crete drift model withD(E)50, stationary monopoles exis
for dimensionless doping larger than a critical value. An u
per bound for this critical doping is

nc5vm

Em21

12vm
, ~14!

which equalsnc50.198 for our numerical example. We hav
found thatn150.16. This agreement with results obtain
assumingD(E)50 is not surprising: we shall prove in Se
III that Eq. ~14! holds as well for the model of Eqs.~7! and
~8! with nonzero diffusivity.

~ii ! For n1,n,n2, traveling fronts moving downstream
exist only if JP@vm ,J1(n)#, where J1(n),1 is a critical
-

value of the current. IfJP@J1(n),1#, the stable solutions are
steady fronts~stationary monopoles!. We have found that
n250.33.

~iii ! New solutions are observed forn.n2. As before,
there are traveling fronts moving downstream ifJ
P@vm ,J1(n)#, and stationary monopoles if J
P@J1(n),J2(n)#, J2(n),1 is a new critical current. For
J2(n),J,1, the stable solutions of Eq.~13! are monopoles
traveling upstream~to the left!. As n increases,J1(n) and
J2(n) approachvm and 1, respectively. Thus stationary s
lutions are found for most values ofJ if n is large enough.

Figure 3 depictsJ1(n) andJ2(n) as functions ofn. No-
tice thatJ1 decreases fromJ151 to J15vm as n increases
from n1. Similarly, J2 decreases fromJ251 to a minimum
value J2'0.53, and then increases back toJ251 asn in-
creases. The monopole velocity as a function of curren
depicted in Fig. 4 for four different doping values,n50.5, 1,
3, and 10. For largern, the interval ofJ for which stationary
solutions exist becomes wider again, trying to span
whole interval (vm,1) asn→`. For very largen, the veloci-
ties of downstream and upstream moving monopoles bec
extremely small in absolute value.

Notice that if we use the complete sequential tunnel
current instead of the drift-diffusion approximation~3!, in
Eq. ~1! the situation is the same. Figure 5 depicts monop
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velocity versus current for well doping corresponding to t
9/4 SL of Ref.@9#. Results obtained with the complete s
quential tunneling current or with approximation~3! ~corre-
sponding to Fig. 4 withn53) are compared. Both velocit
curves are similar, and their quantitative discrepancies
irrelevant in view of the uncertainties involved in a theor
ical calculation of the tunneling current~typically the off-
resonance current is larger than the theoretical predictio!.

Once different stable monopole solutions~moving either
downstream or upstream, stationary! have been identified
we raise the natural question of whether they are compa
with boundary conditions. Another series of numerical sim
lations was carried out to answer this. We numerica
solved Eq.~13! for a current-biased finite SL (N540) with
boundary conditions~10!–~12!. Our results are depicted i
Fig. 6 for realistic doping at the contact layers. We obse
that the emitter boundary condition results in the creation
a charge accumulation layer near this contact. A cha
depletion layer is formed near the collector contact as a re

FIG. 3. Critical currentsJ1 and J2 as functions of the dimen
sionless dopingn. Monopoles move downstream forvm,J
,J1(n), are stationary forJ1(n),J,J2(n), and move upstream
for J2(n),J,1. Dashed lines in this figure represent the boun
n1b(J) andn2b

1 (J).

FIG. 4. Velocity of a monopole wave front as a function ofJ for
four doping valuesn50.5, 1, 3, and 10. Monopoles with negativ
velocity move upstream. For dopingn53 corresponding to the 9/4
SL, we have also represented bounds for the velocity as line
thick dots.
re
-

le
-
y

e
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of the corresponding boundary condition. Except for the
layers, the existence and configuration of monopoles mov
downstream, upstream or remaining stationary agrees
the previous simulations~corresponding to an infinitely long
current-biased SL with a monopolelike initial condition!.

III. MATHEMATICAL ANALYSIS OF TRAVELING
MONOPOLES AND STATIONARY SOLUTIONS

In this section, we theoretically study moving or statio
ary monopoles on an infinitely long, current-biased SL. O
findings will confirm the picture suggested by the numeri
simulations of Sec. II for any doped weakly coupled S
Furthermore, we shall prove the stability of the differe
monopole solutions, and find bounds for the critical values
n andJi . Our results are based upon and extend ideas
proposed by Keener for discrete FitzHugh-Nagumo eq
tions, corresponding to signal transmision in myelinated n
rons@24#. Mathematically analogous problems arise in mo
els of propagation of defects in crystals@25#. These problems
have a structure

dEi

dt
2d ~Ei 1122Ei1Ei 21!5J2v~Ei !, ~15!

which is much simpler than Eq.~13!. Here the parameterd
.0 is a constant diffusion coefficient, andv(E) a ‘‘cubic’’
function with three branches as the electron drift velocity
Fig. 1.

For Eq. ~15!, there are critical values ofJ, J1, and J2,
characterizing wave front behavior@24#. For J.J2(d), there
exist wave front solutions of Eq.~15! moving upstream~to
the left!. For J,J1(d), there are wave fronts moving down
stream~to the right!, whereas forJ1(d),J,J2(d), station-
ary fronts exist. The width of the interval@J1(d),J2(d)# is
an increasing function ofd.

A. Propagation failure and stationary solutions

In Appendix A we state and prove a comparison princip
for Eq. ~13!. As a consequence, if our initial field profile i
monopolelike @monotone increasing with well index, an
sandwiched betweenE(1)(J) andE(3)(J)], so is the electric
field profile for any later timet.0 ~see Appendix A!:

FIG. 5. Monopole velocity as a function of current for the 9
SL. Comparison of results for the discrete drift-diffusion mod
@Eqs. ~1! and ~2!# with n53 ~thick line!, and those obtained by
using the exact tunneling currenteJ(ni ,ni 11 ,Fi) ~thin line! instead
of approximation~3!.

s

of
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FIG. 6. Numerical simulations of the drift-diffusion model with realistic boundary conditions at the contact regions.~a! Monopole
moving downstream forJ50.023, ~b! stationary monopole forJ50.3, and~c! monopole moving upstream forJ50.9. In all cases,
diamonds correspond to the profile att50, and squares to the profile at the largest positive time.
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$Ei~0!% increasing withi

⇒E(1)~J!,Ei~ t !,Ei 11~ t !,E(3)~J!, ; i , t.0.

We now obtain sufficient conditions for an initial monopo
not to propagateupstream or downstream. Under these co
ditions, the monopole may remain stationary or move dow
stream or upstream, respectively. Let us start with a co
tion pinning the left tail of a monopole. AsEi 21,Ei and
Ei 11,E(3)(J), we have

dEi

dt
5

D~Ei !

n
~Ei 112Ei !1

D~Ei !1v~Ei !

n
~Ei 212Ei !

1J2v~Ei !

<
D~Ei !

n
@E(3)~J!2Ei #1J2v~Ei !<0,

provided there existal,bl such that

D~E!

n
@E2E(3)~J!#>J2v~E!, EP~al ,bl !, ~16!

and then we choose some initial field,Ei(0)P(al ,bl). The
previous inequality then impliesEi(t)P@E(1)(J),bl # for all
t.0. This in turn forbids a monopole to move upstream~to
the left!. We say that condition~16! pins the left tail of the
monopole. Whether such (al ,bl) exist depends on the pa
rametersn andJ; see Fig. 7.
-
-
i-

Let us now pin the right tail of a monopole. AsEi 11
.Ei andEi 21.E(1)(J), we have

dEi

dt
5

D~Ei !

n
~Ei 112Ei !1

D~Ei !1v~Ei !

n
~Ei 212Ei !

1J2v~Ei !

>
D~Ei !1v~Ei !

n
@E(1)~J!2Ei #1J2v~Ei !>0,

provided there existar,br such that

D~E!1v~E!

n
@E2E(1)~J!#<J2v~E!,

EP~ar ,br !, ~17!

and we choose some initial fieldEi(0)P(ar ,br). The previ-
ous inequality then impliesEi(t)P@ar ,E(3)(J)# for all t
.0. A monopole cannot then move downstream~to the
right!, and we say that its right tail is pinned. Figure 8 illu
trates our arguments: for fields larger thanar , theEi ’s tend
to increase abovear toward E(3)(J). Then the monopole
cannot move downstream. ForEi,bl , the fields tend to
E(1)(J), and the monopole cannot move upstream. As
fore, the existence of (ar ,br) depends on the values ofn and
J; see Fig. 7.

Figure 7 shows the curvesJ2v(E), D(E) (E2E(3))/n
and @D(E)1v(E)# (E2E(1))/n for n53 and different val-
ues ofJ. At J50.08, Fig. 7~a! shows that there is an interva



4872 PRE 61A. CARPIO, L. L. BONILLA, A. WACKER, AND E. SCHÖLL
FIG. 7. ~a! Functions of the electric field establishing pinning of the monopole tails forn53 andJ50.08. Solid line:J2v(E); dashed
line: D(E) @E2E(3)(J)#/n; dotted line:@D(E)1v(E)# @E2E(1)(J)#/n. ~b! Same plots as in~a! for n53 andJ50.2. ~c! Same plots as in
~a! for n53 andJ50.34.
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(al ,bl) as in Eq.~16!, but no interval (ar ,br) as in Eq.~17!
exist. Then the left tail of a monopole is pinned, but its rig
tail is free. In this condition, a monopole may move dow
stream. Figure 7~b! shows a monopole with both its left an
right tails pinned forJ50.2. Then our theory implies tha
wave front propagationfails and a monopolelike stationar
solution is stable. Numerical simulations show that there
stationary solutions whenJP@0.09,0.53#. Finally, Fig. 7~c!
shows that, ifJ50.34, the right tail of a monopole is pinned
but not its left tail. Under these conditions a monopole m
move upstream. For largern, the estimates become sharp
For instance, whenn510, Eqs.~16! and ~17! hold for J
P@0.05,0.45#. Direct numerical simulations show that st
tionary solutions exist forJP@0.04,0.55#. Systematic use o
these criteria allows us to estimate the critical doping val
n j and critical current valuesJi(n), i 51,2 defined in Sec. II;
see Appendix B. Instead of looking forJ1(n) andJ2(n), it is
more convenient to look for their inverse functions, whi
we may calln1(J) andn2

6(J). According to Fig. 3, the in-
verse function ofJ2(n) is two-valued, and its two branche
are n2

2(J),n2
1(J). We have found the following uppe

boundsn1b(J) and n2b
1 (J) for n1(J) and n2

1(J), respec-
tively:

n1b~J!5vm

Em2E(1)~J!

J2vm
, ~18!

n2b
1 ~J!5D~1!

E(3)~J!21

12J
. ~19!
t
-

re

y
.

s

If n.n1b(J), the right tail of the monopole is pinned
whereas the left tail of the monopole is pinned ifn
.n2b

1 (J); see Appendix B. Notice thatn1b(J) is a decreas-
ing function of J. Therefore, the critical valuen1 ~above
which there are stationary solutions! is smaller thann1b(1),
which is exactly Wacker et al.’s bound, Eq. ~14!. This ex-
plains why bound~14! gives surprisingly good results eve
for the first plateau of the SL current-voltage characteris
@despite having been obtained under the assumptionD(E)
[0] @19,18#. Notice that bound~19! is reasonable for large
dopings and currentsJ'1. See Fig. 3 for a comparison be
tween the critical curvesJ1(n) and J2(n) and bounds~18!
and ~19!.

FIG. 8. A monopole field profile. The field valuesbl andar are
indicated by horizontal dashed lines. Vertical arrows indicate t
the field at those SL periods either~i! decrease towardE(1)(J), and
therefore the monopole left tail is pinned; or~ii ! increase toward
E(3)(J), and therefore the monopole right tail is pinned.
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B. Propagation: traveling fronts

Having shown that only one tail of a monopole is pinn
suggests that the monopole may move in the opposite d
tion. Direct simulations show that this is often the case, a
we will prove this now.

An upstream traveling wave solution of Eq.~13! may
have the form

Ei~ t !5w~ i 1ct!, c.0. ~20!

We will look for an electric field profilew(z), z5 i 1ct,
which is not an exact solution of Eq.~13!, but instead satis-
fies

c
dw

dz
2

D@w~z!#1v@w~z!#

n
@w~z21!2w~z!#

2
D@w~z!#

n
@w~z11!2w~z!#1v@w~z!#2J<0.

~21!

If this subsolutionis initially below an initial field profile,
i.e., w( i ),Ei(0) for all i, then the comparison theorem o
Appendix A guarantees thatEi(t).w( i 1ct) for later times.
As w( i 1ct) moves upstream, so doesEi(t), and the electric
field profile corresponds to a monopole moving upstre
with velocity at leastc. See Fig. 9: a subsolution ‘‘pushes
the monopole upstream, whereas a supersolution~defined be-
low! ‘‘pushes’’ the monopole downstream.

How do we find a reasonable subsolution? An idea is
try a piecewise continuous solution which equalsE(1)(J) for
z,z0 and a larger constantA, AP@E(2)(J),E(3)(J)# @and
thereforev(A)2J<0], for z.z1, with z1.z0. For z0,z
,z1 , w(z) is an unspecified smooth increasing function w
w(z0)5E(1)(J) and w(z1)5A. Now we shall conveniently
select the numbersz0 , z1 , c, andA, so that Eq.~21! holds.
Clearly, Eq.~21! holds forz11,z0 andz21.z1. Suppose
that 0,z12z0,1. Then there are five possibilities:

~1! z,z0 and z11.z1. Then w(z21)5w(z)5E(1)(J)
and w(z11)5A, which, inserted in Eq.~21! yields
2D(E(1)) (A2E(1))/n<0 ~obviously true!.

~2! z21,z0 and z.z1. Then w(z21)5E(1)(J) and
w(z)5w(z11)5A, which inserted in Eq.~21! yields

FIG. 9. A monopole field profile, subsolution and supersoluti
The supersolution is always above the real values of the field,
therefore it pushes the monopole to the right. The subsolu
pushes~from below! the monopole to the left.
c-
d

o

J2v~A!>
D~A!1v~A!

n
@A2E(1)~J!#. ~22!

~3! z0,z21,z1. ThenE(1)(J),w(z21),A andw(z)
5w(z11)5A, which yields J2v(A)>@D(A)1v(A)# @A
2w(z21)#/n. This inequality holds if Eq.~22! does.

~4! z0,z,z1. Then w(z21)5E(1)(J) and E(1)(J)
,w(z),A andw(z11)5A. Inserting this into Eq.~21!, we
find

c
dw

dz
<

D@w~z!#1v@w~z!#

n
@E(1)2w~z!#

1
D@w~z!#

n
@A2w~z!#1J2v@w~z!#.

Let us now assume that we can selectAP(E(2),E(3)) such
that the right hand side of this expression is positive, say

D~w!1v~w!

n
@E(1)~J!2w#1

D~w! ~A2w!

n

1J2v~w!>d.0, E(1),w,A, ~23!

and that we choosec so thatc dw/dz,d. Then Eq.~21!
holds.

~5! z0,z11,z1. Then w(z21)5w(z)5E(1)(J) and
E(1)(J),w(z11),A, which inserted into Eq.~21!, yields
2D(E(1)) @w(z11)2E(1)#/n<0 ~obviously true!.

Summarizing the previous arguments, provided Eqs.~22!
and ~23! hold, w(z) is a subsolution obeying Eq.~21!. The
parameterA can be found graphically. First of all, we depi
the functions J2v(E) and f 1(E;J)[@D(E)1v(E)# @E
2E(1)(J)#/n. Possible values ofA are thoseE for which J
2v(E)> f 1(E;J). For such a value ofA, we may plot the
left side of Eq.~23!:

f 2~E;J,A![
D~E!1v~E!

n
@E(1)~J!2E#

1
D~E! ~A2E!

n
1J2v~E!. ~24!

If f 2(E;J,A).0 for EP@E(1)(J),A#, then the selected valu
of A allows us to construct the sought subsolution. See F
10 for a practical realization of this graphical construction

We have proved rigorously that monopoles may mo
upstream under favorable circumstances. Our proof, us
subsolutions, may yield a very practical additional bonus:
upper boundc* for the velocity of the monopole. Let u
choosed(J,A)5minE(1),E,Af2(E;J,A), z12z051, andw(z)
5@A2E(1)(J)#(z2z0) for z0,z,z1. Then c* 5d(J,A)/
@A2E(1)(J)#. In Fig. 4, 2c* is represented by a line o
thick dots for dopingn53 corresponding to the 9/4 SL.

In a similar vein, we can constructsupersolutionswhich
push the monopole field profile to the right; see Fig. 9. N
we start from a monopole profile moving downstream:

Ei~ t !5w~ i 2ct!, c.0. ~25!

The electric field profilew(z), z5 i 2ct should satisfy

.
d
n
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c
dw

dz
1

D@w~z!#1v@w~z!#

n
@w~z21!2w~z!#

1
D@w~z!#

n
@w~z11!2w~z!#1J2v@w~z!#<0.

~26!

We seek a piecewise continuous supersolution which eq
a constant,A, AP@E(1)(J),E(2)(J)#, for z,z0, and w(z)
5E(3)(J) for z.z1, with z1.z0. For z0,z,z1 , w(z) is an
unspecified smooth increasing function withw(z0)5A, and
w(z1)5E(3)(J). As for subsolutions, we now select conv
niently the numbersz0 , z1 , c andA so that Eq.~26! holds.
Clearly, Eq.~26! holds forz11,z0 and forz21.z1. Sup-
pose that 0,z12z0,1. An analysis of the remaining five
possibilities yields the following criteria to hold forw( i
2ct) to be a supersolution:

J2v~A!<2
D~A!

n
@E(3)~J!2A#[ f 3~A;J!, ~27!

f 4~w;J,A![2
D~w!1v~w!

n
~w2A!1

D~w!

n
@E(3)~J!2w#

1J2v~w!<2d, ~28!

for

A<w<E(3)~J!,
~29!

c
dw

dz
<d.

Provided suchw( i 2ct) is found, solutionsEi(t) of Eq. ~13!
with Ei(0),w( i 1t) will satisfy Ei(t),w( i 2ct1t), and
propagate to the right with speed larger thanc. t is a constant
which can be conveniently chosen to keep the monop
profile below the supersolution. Figure 11 illustrates t
graphical construction of the supersolution by checking t
Eqs.~27! and ~28! hold for particular values ofJ andn.

As in the subsolution case, an upper boundc* for the
monopole velocityc is estimated by choosing2d(J,A)
5maxA,E,E(3)f4(E;J,A), z12z051, and w(z)5@E(3)(J)
2A#(z2z0) for z0,z,z1. Then c* 5d(J,A)/@E(3)(J)

FIG. 10. Curves determining the subsolution forn53, J50.6,
andA512. Solid line:J2v(E); dashed line:f 1(E;J); dotted line:
f 2(E;J,A).
ls

le
e
t

2A#. In Fig. 4, c* is represented by a line of thick dots fo
dopingn53 corresponding to the 9/4 SL.

We can now summarize the results obtained from sub
supersolutions; see Figs. 10 and 11. We find reasonably g
upper bounds for the absolute value of the monopole ve
ity. Furthermore, forn53, conditions~22! and~23! hold for
J50.6 andA512, whereas conditions~27! and~28! hold for
J50.05 andA53. Therefore, monopoles move downstrea
for J<0.05, and they move upstream forJ>0.6. Direct nu-
merical simulations show that~i! the estimateJ150.05 for
the first critical current can be improved toJ150.08; and~ii !
the estimateJ250.6 for the second critical current can b
improved toJ250.54.

IV. CONCLUSIONS AND FINAL COMMENTS

We have presented a theory of monopoles moving do
stream or upstream on an infinitely long doped, curre
biased superlattice when the fields are on the first platea
the current–voltage characteristic. This theory has been
roborated with numerical evidence, which sharpens our
sults. Furthermore, we have simulated a 40-well 9-nmGa
4-nmAlAs SL @9# under doping and contact condition
similar to experimental ones@21#, but under constant curren
bias conditions. This situation is different from the usu
case of voltage bias conditions. We have obtained that
possible to observe monopole wave fronts moving upstre
when the current is kept at large enough levels. Toget
with our theoretical bounds for critical currents and dopin
this numerical prediction could be used to set up an exp
ment to observe this striking phenomenon. For this purpo
we would need an initial condition corresponding to a mon
pole separating two electric field domains at high enou
current. In an ideal world, this situation could be obtained
first fixing a low dc voltage for the 9/4 sample at a value ne
the top of one of the first branches of the current-volta
characteristics. Then we could switch from voltage to curr
bias conditions. The outcome would be a monopole mov
upstream until the emitter region is reached. Presumably
idea of the field distribution corresponding to this situati
could be obtained by time-resolved photoluminescence m
surements@8#.

There are technical problems that must be overcom
one wants to observe these features in real experime

FIG. 11. Curves determining the supersolution forn53, J
50.05, andA53. Solid line:J2v(E); dashed line:f 3(E;J); dot-
ted line: f 4(E;J,A).
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when we switch, there will always be a Faraday-like indu
tive pulse which will probably perturb the state of the syst
in an uncontrolled way. There are other possible biases
could think of. Under dc voltage bias, monopoles movi
upstream are probably created for a short time during r
cation experiment@30#. In these experiments, one has
doped SL with a current-voltage characteristics correspo
ing to multiple stationary monopole solution branches. Vo
age is set at a particular value near the end of a branch
that the field profile is that of a monopole layer connectin
low to a high field domain. Let the monopole layer be l
cated at welli ~counted from the emitter contact!. Then the
voltage is suddenly and appropriately increased. After a
tain time, the field profile settles to a new situation cor
sponding to a monopole layer centered at welli 21 @30#.
This could be an indication of a monopole moving upstrea
albeit for a short time. To increase this time, we could try
set a hybrid bias~between current and voltage bias! by in-
cluding a finite series resistance in our external circuit. A
ditional theoretical and numerical work is needed to expl
these possibilities.
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APPENDIX A: COMPARISON PRINCIPLE

The main theorem which we use to prove our results
Sec. III is the following comparison principle:

Theorem A.1:Let Ui(t) andLi(t), i PZ, be differentiable
sequences such that

dUi

dt
2d1~Ui !@Ui 112Ui #2d2~Ui !@Ui 212Ui #2 f ~Ui !

>
dLi

dt
2d1~Li !@Li 112Li #2d2~Li !@Li 212Li #2 f ~Li !,

~A1!

Ui~0!.Li~0!.

where f, d1.0 and d2.0 are Lipschitz continuous func
tions. Then,

Ui~ t !.Li~ t !, t.0,i PZ

In our discrete drift-diffusion model,

d1~E!5
D~E!

n
, d2~E!5

D~E!1v~E!

n
,

f ~E!5J2v~E!.

Proof: The proof is by contradiction. SetWi(t)5Ui(t)
2Li(t). At t50, Wi(0).0 for all i. Let us assume thatWi
-

e

-

d-
-
so
a

r-
-

,

-
e

-

k
o.
-

n

changes sign after a certain minimum timet1.0, at some
value of i, i 5k. Thus Wk(t1)50 and dWk /dt<0, as t
→t1. We shall show that this is contradictory. Att5t1,
there must be an indexm ~equal or different fromk) such
that Wm(t1)50, while its next neighborWm1 j (t1).0 ( j is
either 1 or21), andWi(t1)50 for all indices betweenk and
m. For otherwiseWk should be identically 0 for allk. Equa-
tion ~A1! implies

dWm

dt
~ t1!>d1„Um~ t1!…Wm11~ t1!1d2„Um~ t1!…Wm21~ t1!

.0.

This contradicts the fact thatdWm /dt should have been non
positive ast→t1, for Wm(t1) to have become zero in the firs
place.

Corollary A.1: Any solutionEi(t) of Eq. ~13! with initial
data Ei(0)P@E(1)(J),E(3)(J)# satisfies Ei(t)
P@E(1)(J),E(3)(J)# for t.0.

Proof: Apply theorem A.1 first withLi5E(1)(J) andUi
5Ei , then withLi5Ei andUi5E(3)(J).

Corollary A.2: If Ei(0) is monotone increasing, that is
Ei(0),Ei 11(0), then, Ei(t) is also monotone increasing
i.e., Ei(t),Ei 11(t) for t.0.

Proof: Apply theorem A.1 with Li5Ei(t) and Ui
5Ei 11(t).

Remark:Strict inequalities in these theorems can be
placed by inequalities, and the corresponding statements
hold. However, the proofs become rather more technical
involved.

APPENDIX B: BOUNDS FOR CRITICAL DOPING
VALUES

We want to estimate the curvesn1b(J) andn2b
6 (J) defined

in Sec. III. To estimaten2b
1 (J), assume thatJ→12 andn is

large. The left tail of a monopole is pinned if Eq.~16! holds.
For large currents, Eq.~16! certainly holds if the curve cor-
responding to the left side of the inequality is above that
the right hand side, forE51 @this is possible becauseD(E)
decreases rapidly to zero as the field increases#. SettingE
51 in Eq. ~16!, we obtain

D~1! @12E(3)~J!#

n
.J21.

In turn, this impliesn.n2b
1 (J), defined in Eq.~19!. This

argument fails for the small values ofJ used to draw Fig. 7.
We believe that quite different reasoning is needed to e
maten2b

2 (J).
The same argument yields our estimaten1b(J) of Eq ~18!.

For Eq.~17! to hold, the curve corresponding to the left sid
of the inequality should be below that of the right hand s
for E5Em . As D(Em)'0, we obtain

v~Em!

n
@Em2E(1)~J!#,J2v~Em!,

which yields Eq.~18!. Figure 3 shows that bound~18! is
reasonably good for all eligible values ofn andJ.
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