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Wave fronts may move upstream in semiconductor superlattices
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In weakly coupled, current biased, doped semiconductor superlattices, domain walls may move upstream
against the flow of electrons. For appropriate doping values, a domain wall separating two electric-field
domains moves downstream below a first critical current, it remains stationary between this value and a second
critical current, and then moves upstream above. These conclusions are reached by using a comparison prin-
ciple to analyze a discrete drift-diffusion model, and validated by numerical simulations. Possible experimental
realizations are suggested.

PACS numbd(s): 05.45—a, 72.20.Ht, 73.6%r

[. INTRODUCTION the first plateau of the SL current-voltage characteristic
[18,21]. For low dc voltages on the first plateau, a discrete
Current instabilities in doped semiconductor superlatticesliffusion (which is a nonlinear function of the fieléhould
(SL’s) have been an active subject of research during thibe added. This term contains the contributionJta;, , of
decade. For strongly coupled SL'’s, Bloch oscillatighis-3]  the tunneling from well + 1 back to welli (which vanishes
and Wannier-Stark hoppirl@] produce negative differential for large enough electric fielti§18,21]. In this paper we
conductivity at high electric fields. This may result in self- report an interesting consequence of electron diffusivity at
sustained oscillations of the current due to recycling oflow fields: if the current is sufficiently high, and so is the
charge dipole domains as in the Gunn effect of bndlype  doping, a domain wallmonopole wavewhich connects two
GaAs[5,2]. For weakly coupled SL'’s, sequential tunneling is domains may travel in a direction opposite to the flow direc-
the main mechanism of vertical transport. Under dc voltageaion for electrons(i.e., upstream in the positive current di-
bias conditions, stationary electric field domains may form ifrection. This striking phenomenon is contrary to the usual
doping is large enougf6,7]. Below a critical doping value, situation: a monopole either moves downstre@gmthe di-
the existing charge inside the SL may not be able to pirrection of the flow of electrons or it remains stationary,
domain walls, and current self-oscillations appg8&r9|. [19]. We substantiate our claim both by numerical simula-
These oscillations may be due to recycling of charge monotions of the discrete drift-diffusion model and by rigorous
poles(domain wallg or dipoles depending on the boundary mathematical analysis based upon a comparison principle
condition at the injecting contact regiofin a typical [22]. Mathematical analysis yields useful bounds for critical
n"-n-n* configuration with the SL imbedded between values of current and well doping, and for monopole veloc-
highly doped regions, the doping at the emitter region isity.
crucia) [10]. Driven chaotic oscillations have also been pre- There are related fields for which differential-difference
dicted[11] and observed in experimerits2]. Finally, there  equations(similar to discrete drift-diffusion modelsnodel
are ways to tune the charge inside the @nd therefore the systems of interest. These include propagation of nerve
obtain stationary domains or self-oscillatipnsithout re-  impulses along myelinated fibers, modeled by discrete
placing it by a different one, for example, by applying a FitzHugh-Nagumo equatiori23,24]; motion of dislocations
transverse magnetic fieldl3] or by photoexciting the SL [25,2€ and sliding charge density wavg27], modeled by
[14]. variants of the Frenkel-Kontorova modgR8]; etc. The
Transport in weakly coupled SL’s can be described bytheory of wave front propagation was developed for some of
simple rate equation models for electron densities and avethese models, which are simpler than ours: convection is
age fields in the welld,15—-18. Many of the effects related typically absent from them and diffusion is purely linear
above have been explained by means of a simple discref@4].
drift model [16,17,19,2Q In this model, the tunneling cur- The rest of the paper is as follows. We write the drift-
rent between two adjacent well§,_,; . ;, equals the two- diffusion model with appropriate boundary conditions in
dimensional(2D) electron charge density at walltimes a  Sec. Il. There we render these equations dimensionless, and
drift velocity, which depends on the electric field at the sameexplain the results of numerical simulations on a current bi-
well. By starting from a microscopic sequential tunnelingased infinitely long SL’s. Furthermore, we find by numerical
model, it has been shown that the discrete drift model is aimulations that our results for infinite SL's may be realized
good approximation at low temperatures and for fields abovén finite SL's with appropriate boundary conditions under
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FIG. 1. (a) Drift velocity and (b) diffusion coefficient for a 9-nm GaAs/4-nm AlAs SL. Doping at the well$\i$=1.5x 10'* cm™2,
whereas at the contact regiond,=2x10'® cm 3. (c) Dimensionless drift velocity (E), diffusion (equivalent to backward tunneling
velocity) D(E), and forward tunneling velocity"(E)=v (E) + D(E). (d) Extension of the dimensionless diffusivity to negative values of
field. We haveD(—E)=v(?(E). The same formula yields the extensionuéP (E) to negative fields. Then(E) is an odd function of.

constant current bias. A theoretical analysis based on thew), and a diffusion termeD(F;) (n;.;—n;)/(d+w)?. We
comparison principle is presented in Sec. lll. Section IV con-have adopted the conventidtypical in this field that the
tains our conclusions. Finally some material of a more techeurrent density has the same direction as the flow of elec-

nical nature is relegated to the Appendixes. trons. Equatior{1) holds fori=1, ... N—1. Equation(2) is
the Poisson equation, and it holds fet 1, ... N. n; is the
Il. DISCRETE DRIFT-DIFFUSION MODEL 2D electron number density at wall which is singularly
concentrated on a plane located at the end of the Wwelis

A. Equations and boundary conditions minusan average electric field on a SL period comprising the

ith well and theith barrier (well i lies between barriers
—1 andi; barriers 0 andN separate the SL from the emitter
and collector contact regions, respectivelarameters, d,

, and N[ are well permittivity, barrier width, well width,
and 2D doping in the wells, respectively.

Drift velocity and diffusion coefficient are depicted in
Fig. 1 for the 9-nmGaAs/4-nmAlAs SL of R4]. We have
———=J1), (1) obtained them from microscopic calculations presented in
(d+w)? Ref.[18] (which is appropriate for these sample parameters
[29]) by settingv (F)=J(NJ,Ng,F)(d+w)/NJ andD(F)
=—[aJ(NJ N5 ,F)/on;]1(d+w)?. Heree J(n;,n; 1,F;)
is the tunneling current between wellsandi+1,J; ;1.

We assume that the tunneling current is a function of the
Equation(1) is Ampee’s law establishig that the total cur- average field at théth SL period,F;=F, and of the 2D
rent densityeJ is the sum of displacement and tunneling electron densities at welisandi+1, n; andn;,,;, respec-
currents. The latter consists of a drift termnov(F;)/(d tively. Notice that our model for the tunneling current,

At low enough temperaturenmuch less than a typical
Fermi energy of a SL well measured from the first subband
say 20 meV or 232 K the following discrete drift-diffusion
equations model sequential vertical transport in a weakl
doped SL[18,21]:

e dF; nju(F) _p(F,) M

e dt = d+w

Fi_Fi—lzg(ni_NVE\)l)' 2
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_envD(F)—en.w®(F) Here we have used the same symbols for dimensional and
= d+w ) dimensionless quantities except for the electric figfddj-
mensional, E dimensionless The parametersv=eNg/
is reasonable for temperatures much lower than a typicdle Fy) and¢=V/[FyN(d+w)] are the dimensionless dop-
Fermi energy in the wells measured from the first subbandhg and average electric fielias, respectively. For the 9/4
(say 20 meV, [21]. The tunneling current density should SL, v~3. We recall that=1,... N—1 in Eq. (7) andi
change sign if we reverse the electric field and exchange the 1, ... N in Eq. (8). The boundary condition&) and (6)
electron densities at wells and i+1: J(n;,ni;¢,F;) become
=—J(nj.1,n;,—F;). This inversion symmetry implies

vD(=F)=v®(F) and v(—F)=—0v(F), d_to"'\]e(Eo)_We(Eo) n=J, (10

where v®(F)=D(F)/(d+w) and vO(F)=v(F) dEy
+v®)(F). See Fig. 1d). gt T We(En) Ny=1, (1D

Equationg1) and(2) should be supplemented with appro- dt
priate bias, initial, and boundary conditions. Among possiblg,nere
bias conditions, we shall consider the extreme cases of cur-
rent biag[ J(t) specified and voltage bias jg)(FM Eo) (d+w)
. Je(Eq)= - ,
DUM
(d+w) 2‘,1 Fi=V, (4) o
We(Eg) = M =0) FuEo) (12)
with specified V=V(t). Using Eq. (4) ignores potential UM
drops at the contact regions and at barrier 0, and it overesti-
mates the contribution of barrié\ by a factor Hw/d [21]. wi(Fy Ey)

These contributions are negligible for long SL'N£40 or We(En) = Um

largen, so that we shall adopt the simpler expressidgh

Appropriate boundary conditions have been derived undefFigure 2 showsl,, w,, andw, as functions of the electric

the same approximations as in Ed) [21]. They are field. They are dimensionless versions of the curves plotted
in Fig. 3 of Ref.[21].

£ dFO nlw(b)(Fo)
29,5 S e
e dt Tle’(Fo) d+w IO, ®) B. Numerical simulations
) Simple solutions of the drift-diffusion equatiorig) and
deN W (Fy) = J(t) 6) (8) under constant current bias are stationary or moving
e dt d+w ' monopole wave fronts connecting two electric field domains.

Let us consider monopole solutions with profi{&s}, which
where the emitter current densmd(ef)(F), the emitter back- are increasing functions df for they are compatible with
ward velocityw®(F), and the collector forward velocity realistic boundary conditions in which the emitter region is
w((F) are functions of the electric field depicted in Fig. 3 highly doped9]. We have simulated numerically on a large
of Ref.[21] for contact regions similar to those used in ex- SL,

perimentg 9].

To analyze the discrete drift-diffusion model, it is E_ D(Ei)+U(Ei)(EA —E)- D(Ei)(E. “E)
convenient to render all equations dimensionless.u(&t) dt v -1 v A
reach its first positive maximum aE{, ,v,,). We adopt, ,

=J-v(E), (13

N3, vm, vm (d+w), eNfoy/(d+w), and eFy(d+w)/
(eNjuw) as the units ofF;, n;, v(F), D(F), eJ, andt,
respfectively. For the first p&/ateau of thle QI{ZSL of RéA, EW(J)<E@(J)<EG)(J) be the three solutions af (E)
we find Fy =6.92 kV/Cm’l\l[fl'SX 10 cm = vm=156  _jforp, <JI<1, where E,,,0,,) is the minimum ofu (E)
cm/s,uy (d+w)=2.03<10 * cnf/s, andeNguw /(d+W)  for E>1. For the 9/4 SL of Fig. 1E,,=9.8571 andv,,
=2.88 Alcnf. The units of current and time are 0.326 mA =0.02192. We have simulated E@.3) for different values

with fixed J, which is equivalent to Eq9.7) and (8). Let

and 2.76 ns, respectively. Then E¢)—(4) become of v>0 and ofJ e (v,,1). The initial condition was chosen
dE so thatE,—E®(J) asi— —«, andE;—E®)(J) asi—x.
—'+v(Ei) n—D(E;) (N41—n))=J, (7) We o_bserved that, after a short transient, a vanety of initial
dt conditions sharing these features evolved toward either a sta-

tionary or moving monopole. For systematic numerical stud-
Ei—Ei_1=v(n—1), (8) ies, we therefore adopted an initial steplike profile, with
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FIG. 2. Dimensionless functions of the electric field for the contact regi@<urrent at the emitted (E). (b) Backward velocity at
the emitterw,(E). (c) Forward velocity at the collectow,(E).

=eEM() for i<0, E;=E®(J) for i>0 andEy,=E®(J).  value of the current. I§ €[ J;(»),1], the stable solutions are
The boundary data were taken to he =E®(J),Ey  steady fronts(stationary monopolés We have found that

=E®)(J) with N large. v,=0.33.

Our results show that the dimensionless dopindeter- (ili) New solutions are observed for>v,. As before,
mines the type of solution of E413) which is stable. There there are traveling fronts moving downstream
are two important values of, v;<v,. el[vm,Ji(»)], and stationary monopoles if J

- (i) For 0<v<w, and each fixed e (vm,1), only travel-  <[J,(1),J,(»)], Jo(¥)<1 is a new critical current. For
ing monopole fronts moving downstrealto the right were 5.,y < j<1, the stable solutions of E¢L3) are monopoles
observed. Fow> v, stationary monopoles were found. Ac- traveling upstreantto the lef). As » increases));(») and

cording to the arguments of Wacket al. [19] for the dis- 3,(») a : :
. . ) . pproachv,, and 1, respectively. Thus stationary so-
crete drift model withD (E) =0, stationary monopoles exist qutions are foundmfor most values d&fif » is large enough.

for dimensionless doping larger than a critical value. An up- Figure 3 depicts),(v) andJ,(») as functions ofy. No
1 2 - No-

per bound for this critical doping is tice thatJ,; decreases frond;=1 to J;=v,, asv increases
from v,. Similarly, J, decreases fromd,=1 to a minimum
E,—1 value J,~0.53, and then increases backXp=1 asv in-
chvml_—vm* (14 creases. The monopole velocity as a function of current is

depicted in Fig. 4 for four different doping valuas=0.5, 1,

3, and 10. For larger, the interval of] for which stationary
which equalsy.=0.198 for our numerical example. We have solutions exist becomes wider again, trying to span the
found thatv,=0.16. This agreement with results obtainedwhole interval ¢, 1) asv—o. For very largev, the veloci-
assumingD (E) =0 is not surprising: we shall prove in Sec. ties of downstream and upstream moving monopoles become
[l that Eq. (14) holds as well for the model of Eq§7) and  extremely small in absolute value.

(8) with nonzero diffusivity. Notice that if we use the complete sequential tunneling
(ii) For vy<w<uw,, traveling fronts moving downstream current instead of the drift-diffusion approximatid8), in
exist only if Je[vy,J1(v)], whereJ (v)<1 is a critical Eq. (1) the situation is the same. Figure 5 depicts monopole
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hv, nv,0 1 2 3 4 5 6 7 8 9 InV [Egs. (1) and (2)] with »=3 (thick line), and those obtained by

using the exact tunneling curread(n; ,n; ., ,F;) (thin line) instead
FIG. 3. Critical currents); andJ, as functions of the dimen- of approximation(3).

sionless dopingv. Monopoles move downstream faw,,<J

<Jui(v), are stationary fod;(v)<J<Jp(v), and move upstream of the corresponding boundary condition. Except for these

for J,(v)<J<1. Dashed lines in this figure represent the boundqayers, the existence and configuration of monopoles moving

vip(J) andvz,(J). downstream, upstream or remaining stationary agrees with
the previous simulation&orresponding to an infinitely long

velocity versus current for well doping corresponding to thecurrent-biased SL with a monopolelike initial conditjon
9/4 SL of Ref.[9]. Results obtained with the complete se-

guential tunneling current or with approximatig¢®) (corre-
sponding to Fig. 4 withv=3) are compared. Both velocity
curves are similar, and their quantitative discrepancies are
irrelevant in view of the uncertainties involved in a theoret-
ical calculation of the tunneling currertypically the off- In this section, we theoretically study moving or station-
resonance current is larger than the theoretical prediction ary monopoles on an infinitely long, current-biased SL. Our
Once different stable monopole solutiofmoving either  findings will confirm the picture suggested by the numerical
downstream or upstream, stationafyave been identified, simulations of Sec. Il for any doped weakly coupled SL.
we raise the natural question of whether they are compatiblEurthermore, we shall prove the stability of the different
with boundary conditions. Another series of numerical simu-monopole solutions, and find bounds for the critical values of
lations was carried out to answer this. We numericallyy andJ;. Our results are based upon and extend ideas first
solved Eq.(13) for a current-biased finite SLN=40) with  proposed by Keener for discrete FitzHugh-Nagumo equa-
boundary conditiong10)—(12). Our results are depicted in tions, corresponding to signal transmision in myelinated neu-
Fig. 6 for realistic doping at the contact layers. We observgons[24]. Mathematically analogous problems arise in mod-
that the emitter boundary condition results in the creation okls of propagation of defects in crysté®5]. These problems
a charge accumulation layer near this contact. A chargl@ave a structure
depletion layer is formed near the collector contact as a result

IIl. MATHEMATICAL ANALYSIS OF TRAVELING
MONOPOLES AND STATIONARY SOLUTIONS

dE;
o) _ ar ~d(E—2E+E_)=J-v(E), (19
5]

which is much simpler than Eq13). Here the parametet
>0 is a constant diffusion coefficient, ardE) a “cubic”
function with three branches as the electron drift velocity of
Fig. 1.

For Eg. (15), there are critical values of, J;, and J,,
: characterizing wave front behavif24]. ForJ>J,(d), there
1y exist wave front solutions of Eq15) moving upstreanito
the lef). ForJ<J,(d), there are wave fronts moving down-
stream(to the righy, whereas fod;(d)<J<J,(d), station-
ary fronts exist. The width of the interval,(d),J,(d)] is
an increasing function od.

v=0.5

A. Propagation failure and stationary solutions

FIG. 4. Velocity of a monopole wave front as a functionldbr In Appendix A we state and prove a comparison principle
four doping values'=0.5, 1, 3, and 10. Monopoles with negative for Ed. (13). As a consequence, if our initial field profile is
velocity move upstream. For doping=3 corresponding to the 9/4 monopolelike [monotone increasing with well index, and
SL, we have also represented bounds for the velocity as lines dandwiched betweeB)(J) andE®)(J)], so is the electric
thick dots. field profile for any later time>0 (see Appendix A
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FIG. 6. Numerical simulations of the drift-diffusion model with realistic boundary conditions at the contact re@phonopole
moving downstream fod=0.023, (b) stationary monopole fod=0.3, and(c) monopole moving upstream fat=0.9. In all cases,
diamonds correspond to the profiletat0, and squares to the profile at the largest positive time.

{E;{(0)} increasing with Let us now pin the right tail of a monopole. As;, ;
>E, andE;_;>E®(J), we have
=EWQ)<E()<En(D<E®Q), Vi, t>0.

dE; _ D(E) B +D(Ei)+U(Ei)(E B
We now obtain sufficient conditions for an initial monopole dt 4 R e
not to propagateupstream or downstream. Under these con- +I—v(E)
ditions, the monopole may remain stationary or move down- :
stream or upstream, respectively. Let us start with a condi- D(E)+v(E)
tion pinning the left tail of a monopole. AE;_;<E; and Bf[E( )(3)—Ei]+J-v(E)=0,

Ei.1<E®)(J), we have

provided there exish, <b, such that

E_D(Ei)(E _E)+D(Ei)+U(Ei)(E _E)

dt v i+1 i v i—1 i M[E—E(l)(J)]SJ—U(E),
+J—v(E))
D(E) Ee(a,by), (17)

[E®(I)—E]+I-v(E)=0,

v and we choose some initial fiel} (0)  (a, ,b,). The previ-
ous inequality then implie€;(t) e[a,,E®)(J)] for all t
>0. A monopole cannot then move downstredin the
D(E) right), and we say that its right tail is pinned. Figure 8 illus-

=3 _ trates our arguments: for fields larger thegn the E;’s tend
[E-EP(D]=I-v(E), Ee(ab), (19 to increase above, toward E()(J). Then the monopole

cannot move downstream. F&;<Db,, the fields tend to

and then we choose some initial fiel,(0) e (a,,b;). The E®(J), and the monopole cannot move upstream. As be-
previous inequality then implieg;(t) e[EY)(J),b,] for all  fore, the existence ofa ,b,) depends on the values sfand
t>0. This in turn forbids a monopole to move upstreém J; see Fig. 7.
the lefy. We say that conditioi16) pins the left tail of the Figure 7 shows the curves—uv(E), D(E) (E—E®)/v
monopole. Whether sucha(,b,) exist depends on the pa- and[D(E)+v(E)](E—E®)/v for »=3 and different val-

rametersy andJ; see Fig. 7. ues ofJ. At J=0.08, Fig. Ta) shows that there is an interval

provided there exisq <b, such that

14
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FIG. 7. (a) Functions of the electric field establishing pinning of the monopole tailsfo8 andJ=0.08. Solid line:J—v(E); dashed
line: D(E) [E— E®)(J)]/v; dotted lineD(E) +v(E)] [E—E®(J)]/v. (b) Same plots as ife) for =3 andJ=0.2. (c) Same plots as in
(a) for v=3 andJ=0.34.

(a,,b)) as in Eq.(16), but no interval &, ,b,) as in Eq.(17) If v>v,,(J), the right tail of the monopole is pinned,
exist. Then the left tail of a monopole is pinned, but its rightwhereas the left tail of the monopole is pinned if
tail is free. In this condition, a monopole may move down—>,,2+b(3); see Appendix B. Notice thaty,(J) is a decreas-
stream. Figure (b) shows a monopole with both its left and jng function of J. Therefore, the critical value; (above
right tails pinned forJ=0.2. Then our theory implies that \yhich there are stationary solutioris smaller tharv;;(1),
wave front propagatioffiails and a monopolelike stationary hich is exactly Wacker et al.’s boungq. (14). This ex-
solution is stable. Numerical simulations show that there ar¢ains why bound14) gives surprisingly good results even
stationary solutions whed[0.09,0.53. Finally, Fig. c)  for the first plateau of the SL current-voltage characteristics
shows that, if)=0.34, the right tail of a monopole is pinned, [despite having been obtained under the assumbi¢E)
but not its left tail. Under these conditions a monopole may= 0] [19,1§. Notice that bound19) is reasonable for large
move upstream. For larger, the estimates become sharper. gopings and currentd~1. See Fig. 3 for a comparison be-
For instance, whenv=10, Egs.(16) and (17) hold for J  tween the critical curved;(v) andJ,(») and bound<18)
€[0.05,0.4. Direct numerical simulations show that sta- gnd(19).

tionary solutions exist fod € [ 0.04,0.55. Systematic use of

these criteria allows us to estimate the critical doping values »
v; and critical current valueg(v), i =1,2 defined in Sec. II; f f 1 E
see Appendix B. Instead of looking fdf(v) andJ,(v), itis i { i i .
more convenient to look for their inverse functions, which = = = — = — = - - _ &_ _ _ _ _ _ ___ a,

we may callv,(J) and v, (J). According to Fig. 3, the in-
verse function ofl,(v) is two-valued, and its two branches

are v, (J)<v; (J). We have found the following upper s EO
bounds v1,(J) and v,,(J) for »,(J) and v, (J), respec-
tively: L= LIS b,
I I A I o
1 yvvyvy o7 E
E,,—EM(J)
Vlb(J):Um?: (18) FIG. 8. A monopole field profile. The field valués anda, are
m indicated by horizontal dashed lines. Vertical arrows indicate that

3) the field at those SL periods eith@) decrease towarg*(J), and
v (J)=D(1) EX()-1 (19) therefore the monopole left tail is pinned; 6r) increase toward
2b 1-J E®)(J), and therefore the monopole right tail is pinned.
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3)
. J—v(A)= M[A— EM(J)]. (22)

(3) zg<z—1<z;. ThenEW(J)<w(z—1)<A andw(z)
=w(z+1)=A, which yieldsJ—v(A)=[D(A)+v(A)][A
—w(z—1)]/v. This inequality holds if Eq(22) does.

(4) zo<z<z;. Then w(z—1)=E®(J) and EM(J)
<w(z)<A andw(z+1)=A. Inserting this into Eq(21), we
find

E(l)
dw< D[w(z)]+v[w(2z)]

FIG. 9. A monopole field profile, subsolution and supersolution. e [E(l)_W(Z)]
The supersolution is always above the real values of the field, and dz v
therefore it pushes the monopole to the right. The subsolution
pushes(from below the monopole to the left. n Dlw(z)] [A—wW(2)]+I—o[W(2)]
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B. Propagation: traveling fronts
Let us now assume that we can seléat (E(?,E®) such

Having shown that only one tail of & monopole is pinned ¢ the right hand side of this expression is positive, say
suggests that the monopole may move in the opposite direc-

tion. Direct simulations show that this is often the case, and D(w)+o(w) . D(w) (A—w)
we will prove this now. ———[EDQ) W]+ ————
An upstream traveling wave solution of E(L3) may v v

have the form +J-v(w)=6>0, EM<w<A, (23)

Ei()=w(i+ct), c>0. (200 and that we choose so thatc dw/dz<s. Then Eq.(21)
holds.

We will look for an electric field profilew(z), z=i+ct, (5) zg<z+1<z;. Then w(z—1)=w(z)=E¥(J) and

which is not an exact solution of E¢L3), but instead satis- E™(J)<w(z+1)<A, which inserted into Eq(21), yields

fies —D(E®) [w(z+1)—EM]/»=<0 (obviously true.

Summarizing the previous arguments, provided EZ3)
and (23) hold, w(z) is a subsolution obeying E@21). The
dw D[w(z)]+v[w(z)] [(W(z—1)-w(2)] parametei can be found graphically. First of all, we depict
dz v the functions J—v(E) and f{(E;J)=[D(E)+v(E)][E
D[W(2)] —E®(J)]/v. Possible values oA are thoseE for which J
— " wW(z+1)—w(2)]+v[w(z)]-I<O. —v(E)=f,(E;J). For such a value of, we may plot the
v left side of Eq.(23):

(21)

fo(E;J,A)= [EM(J)—E]

D(E)+v(E)
If this subsolutionis initially below an initial field profile, g

i.e., w(i)<E;(0) for all i, then the comparison theorem of D(E) (A—E)
Appendix A guarantees th&; (t)>w(i +ct) for later times. +

As w(i +ct) moves upstream, so doEgt), and the electric
figld profi[e corresponds to a monopole mqving upstreams f,(E;J,A)>0 for Ee[E()(J),A], then the selected value
with velocity at least. See Fig. 9: a subsolution “pushes” of A allows us to construct the sought subsolution. See Fig.
the monopole upstream, whereas a supersoldtiefined be- 10 for a practical realization of this graphical construction.
low) “pushes” the monopole downstream. We have proved rigorously that monopoles may move
How do we find a reasonable subsolution? An idea is tqipstream under favorable circumstances. Our proof, using
try a piecewise continuous solution which equal®(J) for  subsolutions, may yield a very practical additional bonus: an
z<zy and a larger constam, Ae[E@(J),E®/(J)] [and  ypper boundc* for the velocity of the monopole. Let us
thereforev (A) —J=<0], for z>z;, with z;>2,. Forz,<z  chooses(J,A) = mingw-gafAE;JA), z,— =1, andw(z)
<z;, W(2) is an unspecified smooth increasing function with =[ A~ EM)(J)](z—z,) for zo<z<z,. Then c*=45(J,A)/
w(zo)=E™(J) andw(z;)=A. Now we shall conveniently [A—E(1)(J)]. In Fig. 4, —c* is represented by a line of
select the numbergy, z;, ¢, andA, so that Eq(21) holds.  thjck dots for dopingz=3 corresponding to the 9/4 SL.
Clearly, Eq.(21) holds forz+ 1<z, andz—1>z,. Suppose In a similar vein, we can construsupersolutionsvhich
that 0<z;—z,<1. Then there are five possibilities: push the monopole field profile to the right; see Fig. 9. Now
(1) z<zy andz+1>2z;. Thenw(z—1)=w(2)=EM(J)  we start from a monopole profile moving downstream:
and w(z+1)=A, which, inserted in Eq.(21) vyields
—D(EW) (A—EM)/v=0 (obviously true. Ei(t)=w(i—ct), c¢>0. (25)
(2) z—1<z, and z>z;. Then w(z—1)=EM(J) and
w(z)=w(z+1)=A, which inserted in Eq(21) yields The electric field profilev(z), z=i—ct should satisfy

+J-v(E). (29
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FIG. 10. Curves determining the subsolution for 3, J=0.6,
andA=12. Solid line:J—v(E); dashed linef(E;J); dotted line:
fo(E;J,A).

dw D[w(2)]+v[w(z)]
c—+
dz v

| Pw@)]
14

[w(z=1)-w(2)]

[w(z+1)—w(z)]+JI—v[w(z)]=<O.

(26)
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FIG. 11. Curves determining the supersolution for3, J
=0.05, andA=3. Solid line:J—v(E); dashed linef;(E;J); dot-
ted line: f4(E;J,A).

—A]. In Fig. 4,c* is represented by a line of thick dots for
doping v=3 corresponding to the 9/4 SL.

We can now summarize the results obtained from sub and
supersolutions; see Figs. 10 and 11. We find reasonably good
upper bounds for the absolute value of the monopole veloc-
ity. Furthermore, fown=3, conditions(22) and(23) hold for
J=0.6 andA=12, whereas condition®7) and(28) hold for

We seek a piecewise continuous supersolution which equals=0.05 andA= 3. Therefore, monopoles move downstream

a constantA, Ae[EM(J),E(J)], for z<zy, and w(z)
=E®(J) for z>z,, with z;>z,. Forzy<z<z;, w(z) is an
unspecified smooth increasing function witlfzg) = A, and

for J=<0.05, and they move upstream fi¥0.6. Direct nu-
merical simulations show thdt) the estimatel;=0.05 for
the first critical current can be improvedde=0.08; and(ii)

w(z;)=E®)(J). As for subsolutions, we now select conve- the estimate],=0.6 for the second critical current can be

niently the numberg,, z;, ¢ andA so that Eq.26) holds.
Clearly, Eq.(26) holds forz+ 1<z, and forz—1>2z,. Sup-

pose that 8<z;—z,<1. An analysis of the remaining five

possibilities yields the following criteria to hold fow(i
—ct) to be a supersolution:

D(A)

J-v(A)=— T[E(3)(J)—A]Ef3(A;J), (27)

fawid A= O )+ 2 ) )
+I-v(w)<—96, (28
for
A<w=<E®)()),
(29
dw<
CE\ )

Provided suchw(i —ct) is found, solution€;(t) of Eq. (13
with E;(0)<w(i+ 7) will satisfy E;(t)<w(i —ct+7), and
propagate to the right with speed larger tltanm is a constant

improved toJ,=0.54.

IV. CONCLUSIONS AND FINAL COMMENTS

We have presented a theory of monopoles moving down-
stream or upstream on an infinitely long doped, current-
biased superlattice when the fields are on the first plateau of
the current—voltage characteristic. This theory has been cor-
roborated with numerical evidence, which sharpens our re-
sults. Furthermore, we have simulated a 40-well 9-nmGaAs/
4-nmAIAs SL [9] under doping and contact conditions
similar to experimental ond21], but under constant current
bias conditions. This situation is different from the usual
case of voltage bias conditions. We have obtained that it is
possible to observe monopole wave fronts moving upstream
when the current is kept at large enough levels. Together
with our theoretical bounds for critical currents and dopings,
this numerical prediction could be used to set up an experi-
ment to observe this striking phenomenon. For this purpose,
we would need an initial condition corresponding to a mono-
pole separating two electric field domains at high enough
current. In an ideal world, this situation could be obtained by
first fixing a low dc voltage for the 9/4 sample at a value near
the top of one of the first branches of the current-voltage

which can be conveniently chosen to keep the monopoleharacteristics. Then we could switch from voltage to current
profile below the supersolution. Figure 11 illustrates thebias conditions. The outcome would be a monopole moving
graphical construction of the supersolution by checking thatipstream until the emitter region is reached. Presumably an

Eqgs.(27) and(28) hold for particular values od and ».

As in the subsolution case, an upper bouwstd for the
monopole velocityc is estimated by choosing- §(J,A)
=max,e-eofsEJA), 21-2=1, and w(2)=[E®)(J)
—Al(z—z0) for zp<z<z;. Then c*=6(J,A)/[E®)J)

idea of the field distribution corresponding to this situation
could be obtained by time-resolved photoluminescence mea-
surementg$8].

There are technical problems that must be overcome if
one wants to observe these features in real experiments:
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when we switch, there will always be a Faraday-like induc-changes sign after a certain minimum time>0, at some
tive pulse which will probably perturb the state of the systemvalue of i, i=k. Thus W,(t;)=0 and dW,/dt<0, ast

in an uncontrolled way. There are other possible biases we-t,. We shall show that this is contradictory. Att,
could think of. Under dc voltage bias, monopoles movingthere must be an indem (equal or different fromk) such
upstream are probably created for a short time during relothat W,,(t;) =0, while its next neighboW,,;(t;)>0 (j is
cation experimen{30]. In these experiments, one has aeither 1 or—1), andw,(t,)=0 for all indices betweek and
doped SL with a current-voltage characteristics correspondm. For otherwiseV, should be identically O for ak. Equa-
ing to multiple stationary monopole solution branches. Volt-tion (A1) implies

age is set at a particular value near the end of a branch, so

that the field profile is that of a monopole layer connecting a dW,,

low to a high field domain. Let the monopole layer be lo- —gp (1) d1(Um(t2)) Wiy 1 (t) + do(U (1)) Win-a(ta)
cated at welli (counted from the emitter contaciThen the

voltage is suddenly and appropriately increased. After a cer- >0.

tain time, the field profile settles to a new situation corre-

sponding to a monopole layer centered at well [30].  This contradicts the fact thatW,,/dt should have been non-
This could be an indication of a monopole moving upstreampositive ag—t, for Wi(t;) to have become zero in the first
albeit for a short time. To increase this time, we could try toplace.

set a hybrid biagbetween current and voltage biasy in- Corollary A.1: Any solutionE;(t) of Eqg. (13) with initial
cluding a finite series resistance in our external circuit. Ad-data  E;(0)e[E®(J),E®)(J)] satisfies  E;(t)
ditional theoretical and numerical work is needed to explores [E"(J),E®)(3)] for t>0.
these possibilities. Proof: Apply theorem A.1 first withL;=E®(J) and U,
=E;, then withL;=E; andU;=E®)(J).
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APPENDIX A: COMPARISON PRINCIPLE APPENDIX B: BOUNDS FOR CRITICAL DOPING
VALUES
The main theorem which we use to prove our results in _ . _
Sec. Ill is the following comparison principle: We want to estimate the curves,(J) andv,,(J) defined
Theorem A.1Let U;(t) andL;(t), i € Z, be differentiable in Sec. lIl. To estimater,,(J), assume thali—1— andv is
sequences such that large. The left tail of a monopole is pinned if Ed.6) holds.

For large currents, Eq16) certainly holds if the curve cor-
responding to the left side of the inequality is above that of
the right hand side, foE =1 [this is possible becaud®(E)
decreases rapidly to zero as the field increhsBstting E

= o (L)L L]~ do(L[L -y~ L]~ (L, =1 i EQ.(16), we obtain
D(L[1-EC)]_

14

du,
W_dl(Ui)[Ui+1_Ui]_dz(Ui)[Ui—l_Ui]_f(Ui)

(A1) J—1.

Ui(0)>L;(0). o . _ . .
_ _ . In turn, this impliesv>w,,(J), defined in Eq.(19). This
wheref, d;>0 andd,>0 are Lipschitz continuous func- argument fails for the small values dfused to draw Fig. 7.
tions. Then, We believe that quite different reasoning is needed to esti-

. . : mate v,,(J).
Ui=Li(0), t>0ieZ The same argument yields our estimaig(J) of Eq(18).
In our discrete drift-diffusion model, For Eqg.(17) to hold, the curve corresponding to the left side
of the inequality should be below that of the right hand side
D(E D(E)+v(E for E=E,,. As D(E,;)=0, we obtain
dy(E)= =) gy - ETE) ; ;
g v(Em)
Em—E®()]<I—v(En),
f(E):\]_U(E) v [ m ( )] v( m)

Proof: The proof is by contradiction. Séw/,(t)=U,;(t)  which yields Eq.(18). Figure 3 shows that bound.8) is
—L;(t). Att=0, W,(0)>0 for alli. Let us assume thaW, reasonably good for all eligible values ofandJ.
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